
 Let humanity enter the safe blockchain world.

- 1 -

 Let humanity enter the safe blockchain world.

- 2 -

Version description

The revision Date Revised Version

Write

documentation
20211126 KNOWNSEC Blockchain Lab V1.0

Document information

Title Version Document Number Type

Hotpot Funds V3 Smart

Contract Audit Report
V1.0

0e0851f0a849434a89193db957b2c

170

Open to

project team

Statement

KNOWNSEC Blockchain Lab only issues this report for facts that have occurred

or existed before the issuance of this report, and assumes corresponding responsibilities

for this. KNOWNSEC Blockchain Lab is unable to determine the security status of its

smart contracts and is not responsible for the facts that will occur or exist in the future.

The security audit analysis and other content made in this report are only based on the

documents and information provided to us by the information provider as of the time

this report is issued. KNOWNSEC Blockchain Lab 's assumption: There is no missing,

tampered, deleted or concealed information. If the information provided is missing,

tampered with, deleted, concealed or reflected in the actual situation, KNOWNSEC

Blockchain Lab shall not be liable for any losses and adverse effects caused thereby.

 Let humanity enter the safe blockchain world.

- 3 -

Directory

1. Summarize .. - 6 -

2. Item information .. - 7 -

 Item description .. - 7 -

 The project's website .. - 7 -

 White Paper .. - 7 -

 Review version code .. - 7 -

 Contract file and Hash/contract deployment address - 8 -

3. External visibility analysis ... - 10 -

 HotPotV3Fund contracts .. - 10 -

 HotPotV3FundController contracts .. - 11 -

4. Code vulnerability analysis ... - 13 -

 Summary description of the audit results ... - 13 -

5. Business security detection .. - 16 -

 Extract function【Pass】 ... - 16 -

 Harvest function【Pass】 .. - 18 -

 Slippage check【Pass】 ... - 19 -

 Increase or decrease in liquidity【Pass】 .. - 22 -

 Fund inquiry【Pass】 .. - 27 -

6. Code basic vulnerability detection .. - 32 -

 Compiler version security【Pass】 ... - 32 -

 Redundant code【Pass】 ... - 32 -

 Let humanity enter the safe blockchain world.

- 4 -

 Use of safe arithmetic library【Pass】 .. - 32 -

 Not recommended encoding【Pass】 .. - 33 -

 Reasonable use of require/assert【Pass】 ... - 33 -

 Fallback function safety【Pass】 .. - 33 -

 tx.origin authentication【Pass】 .. - 34 -

 Owner permission control【Pass】 ... - 34 -

 Gas consumption detection【Pass】 ... - 34 -

 call injection attack【Pass】 .. - 35 -

 Low-level function safety【Pass】 .. - 35 -

 Vulnerability of additional token issuance【Pass】 - 35 -

 Access control defect detection【Pass】 ... - 36 -

 Numerical overflow detection【Pass】 ... - 36 -

 Arithmetic accuracy error【Pass】 .. - 37 -

 Incorrect use of random numbers【Pass】 .. - 37 -

 Unsafe interface usage【Pass】 ... - 38 -

 Variable coverage【Pass】 ... - 38 -

 Uninitialized storage pointer【Pass】 .. - 38 -

 Return value call verification【Pass】 ... - 39 -

 Transaction order dependency【Pass】 ... - 40 -

 Timestamp dependency attack【Pass】 ... - 40 -

 Denial of service attack【Pass】.. - 41 -

 Fake recharge vulnerability【Pass】 ... - 41 -

 Let humanity enter the safe blockchain world.

- 5 -

 Reentry attack detection【Pass】... - 42 -

 Replay attack detection【Pass】 .. - 42 -

 Rearrangement attack detection【Pass】 ... - 42 -

7. Appendix A: Security Assessment of Contract Fund Management - 44 -

 Let humanity enter the safe blockchain world.

- 6 -

1. Summarize

The effective test time of this report is from November 16, 2021 to November

26, 2021. During this period, the security and standardization of the fund pool and

fund pool controller code of the Hotpot Funds V3 smart contract will be audited

and reviewed. Use this as the statistical basis for the report.

The scope of this smart contract security audit does not include external contract

calls, new attack methods that may appear in the future, and code after contract

upgrades or tampering. (With the development of the project, the smart contract may

add a new pool , New functional modules, new external contract calls, etc.), does not

include front-end security and server security.

In this audit report, engineers conducted a comprehensive analysis of the common

vulnerabilities of smart contracts (Chapter 6). The smart contract code of the Hotpot

Funds V3 is comprehensively assessed as PASS.

Since the testing is under non-production environment, all codes are the latest

version. In addition, the testing process is communicated with the relevant engineer,

and testing operations are carried out under the controllable operational risk to avoid

production during the testing process, such as: Operational risk, code security risk.

KNOWNSEC Attest information:

classification information

report number 0e0851f0a849434a89193db957b2c170

report query link
https://attest.im/attestation/searchResult?qurey=0e0851

f0a849434a89193db957b2c170

javascript:;
javascript:;
https://attest.im/attestation/searchResult?qurey=0e0851f0a849434a89193db957b2c170
https://attest.im/attestation/searchResult?qurey=0e0851f0a849434a89193db957b2c170

 Let humanity enter the safe blockchain world.

- 7 -

2. Item information

 Item description

Decentralized exchanges provide services for transactions by pooling liquidity. In

theory, anyone can become a liquidity provider, but in reality, providing liquidity

efficiently requires professional knowledge, in-depth data analysis, and corresponding

automated tools. The original intention of the Hotpot Fund is to create valuable liquidity

income by merging users' funds, managed by a professional fund team; to create

valuable liquidity income under the premise of open source code, transparent operation,

and user fund security.

 The project's website

https://www.hotpot.fund/

 White Paper

https://www.hotpot.fund/docs/White_Paper_en_V2.pdf

 Review version code

https://github.com/HotPotFund/HotPotFundsV3

HotPotV3FundController.sol:https://etherscan.io/address/0xb440

bd39870a94ba1131c6182ca5fba589d5449e#code

HotPotV3FundFactory.sol:https://etherscan.io/address/0xe9cf1fd8

d9d804ef3ce6754776144b86c93efb8d#code

HotPot.sol:https://etherscan.io/address/0x615D8e5e1344B36A95

F6ecd8e6CDA020E84dc25b#code

javascript:;
https://www.hotpot.fund/
https://www.hotpot.fund/docs/White_Paper_en_V2.pdf
https://github.com/HotPotFund/HotPotFundsV3
https://github.com/HotPotFund/HotPotFundsV3
https://github.com/HotPotFund/HotPotFundsV3
https://github.com/HotPotFund/HotPotFundsV3
https://github.com/HotPotFund/HotPotFundsV3
https://github.com/HotPotFund/HotPotFundsV3
https://github.com/HotPotFund/HotPotFundsV3

 Let humanity enter the safe blockchain world.

- 8 -

 Contract file and Hash/contract deployment address

The contract documents MD5

HotPotV3Fund.sol 5466b5ebba70e0b79542c7b5bc0190d7

Position.sol 95011c0d8554c9934d1d4bba31d73f95

FixedPoint64.sol ee141a06c9382a6798b8c6c4c4fa90f7

PathPrice.sol c41ee38f77254cddd75a97bb4b23a435

Array2D.sol 9f5ac7801a4a952b08425076800c3fc0

HotPotV3FundControlle

r.sol
43ba5aa371438cadbc27d6afcfe82e8f

HotPotV3FundFactory.s

ol
d49d1d6dedd4ece3e5f34c443b76f17b

HotPotV3FundDeployer.

sol
80805e7d395dd7e0318d929d9fe478c0

Multicall.sol 50304727e75e3e5b9ceda24ce2bf2002

HotPotV3FundERC20.sol e1049ffef73564dfbbef75d6885812e4

IHotPotV3FundFactory.

sol
23a1bdda1cc008dfa5147a6639e27425

IMulticall.sol c1b84afbc4676429f8e6d31b2d2900f2

IMulticall.sol c1b84afbc4676429f8e6d31b2d2900f2

IHotPotV3FundERC20.so

l
319725b2d04c579b829af746e886991d

IHotPotV3Fund.sol 7320f66f9fc016ef7275b77a70aa5685

 Let humanity enter the safe blockchain world.

- 9 -

IManagerActions.sol 8599cd9643971e4ea465aa676d5e9f85

IControllerEvents.sol 623e6f9b1ee724a50d47ff1d7d57e071

IControllerState.sol 035cc19f9602d2698d95d977af4835c3

IGovernanceActions.so

l
8508a595617fe4dab9de9ec94dbd6fd1

IHotPotV3FundDeployer

.sol
73c307b86d8b46911626c796369d9c7c

IHotPotV3FundControll

er.sol
70cb2fe2345286b88c0548641bc1dda8

IHotPot.sol 74ca33b4030b551c329286d354d2e3bb

IWETH9.sol 4732f0afb7238d649338cce6e41cb4e5

IHotPotV3FundEvents.s

ol
1dffe1d43a6cb361fca1c0a36a299199

IHotPotV3FundManagerA

ctions.sol
4d3b0cb7eacfd93da070b16533bffc08

IHotPotV3FundUserActi

ons.sol
77d6561630d8fde9cd74abeb5e690185

IHotPotV3FundState.so

l
25d26dd0b12298818e042c7192981fdb

 Let humanity enter the safe blockchain world.

- 10 -

3. External visibility analysis

 HotPotV3Fund contracts

HotPotV3Fund

funcName visibility state changes decorator
payable

reception
instructions

deposit external Ture --- --- ---

_deposit internal Ture --- --- ---

_assetsOfPool internal False --- --- ---

withdraw external Ture

checkDeadlin

e(deadline),

nonReentrant

--- ---

poolsLength external False --- --- ---

positionsLength external False --- --- ---

setPath external Ture

onlyControlle

r

--- ---

uniswapV3MintC

allback

external Ture --- --- ---

init external Ture

onlyControlle

r

--- ---

add external Ture

onlyControlle

r

--- ---

sub external Ture

onlyControlle

r

--- ---

move external Ture

onlyControlle

r

--- ---

javascript:;

 Let humanity enter the safe blockchain world.

- 11 -

assetsOfPosition public False --- --- ---

assetsOfPool public False --- --- ---

totalAssets public False --- --- ---

_assetsOfPool_ass

etsOfPool

internal False --- --- ---

 HotPotV3FundController contracts

HotPotV3FundController

funcName visibility state changes decorator
payable

reception
instructions

maxPriceImpact external False --- --- ---

maxSqrtSlippage external False --- --- ---

setHarvestPath external True

onlyGovernan

ce

--- ---

setMaxPriceImpa

ct

external True

onlyGovernan

ce

--- ---

setMaxSqrtSlippa

ge

external True

onlyGovernan

ce

--- ---

harvest external True --- --- ---

setGovernance external True

onlyGovernan

ce

--- ---

setVerifiedToken external True

onlyGovernan

ce

--- ---

setPath external True

onlyManager(

fund)

--- ---

javascript:;

 Let humanity enter the safe blockchain world.

- 12 -

init external True

checkDeadlin

e(deadline),

onlyManager(

fund)

--- ---

add external True

checkDeadlin

e(deadline),

onlyManager(

fund)

--- ---

sub external True

checkDeadlin

e(deadline),

onlyManager(

fund)

--- ---

mov external True

checkDeadlin

e(deadline),

onlyManager(

fund)

--- ---

 Let humanity enter the safe blockchain world.

- 13 -

4. Code vulnerability analysis

 Summary description of the audit results

Audit results

audit

project
audit content condition description

Business

security

detection

Extract function Pass After testing, there is no security issue.

Harvest function Pass After testing, there is no security issue.

Slippage check Pass After testing, there is no security issue.

Increase or decrease

in liquidity
Pass After testing, there is no security issue.

Fund inquiry Pass After testing, there is no security issue.

Code

basic

vulnerabi

lity

detection

Compiler version

security

Pass After testing, there is no security issue.

Redundant code Pass After testing, there is no security issue.

Use of safe

arithmetic library

Pass After testing, there is no security issue.

Not recommended

encoding

Pass After testing, there is no security issue.

Reasonable use of

require/assert
Pass After testing, there is no security issue.

fallback function

safety

Pass After testing, there is no security issue.

tx.origin

authentication

Pass After testing, there is no security issue.

Owner permission

control
Pass After testing, there is no security issue.

Gas consumption

detection

Pass After testing, there is no security issue.

call injection attack Pass After testing, there is no security issue.

 Let humanity enter the safe blockchain world.

- 14 -

Low-level function

safety

Pass After testing, there is no security issue.

Vulnerability of

additional token

issuance

Pass After testing, there is no security issue.

Access control

defect detection

Pass After testing, there is no security issue.

Numerical overflow

detection

Pass After testing, there is no security issue.

Arithmetic accuracy

error
Pass After testing, there is no security issue.

Wrong use of

random number

detection

Pass After testing, there is no security issue.

Unsafe interface use Pass After testing, there is no security issue.

Variable coverage Pass After testing, there is no security issue.

Uninitialized storage

pointer

Pass After testing, there is no security issue.

Return value call

verification

Pass After testing, there is no security issue.

Transaction order

dependency

detection

Pass After testing, there is no security issue.

Timestamp

dependent attack

Pass After testing, there is no security issue.

Denial of service

attack detection

Pass After testing, there is no security issue.

Fake recharge

vulnerability

detection

Pass After testing, there is no security issue.

Reentry attack

detection

Pass After testing, there is no security issue.

 Let humanity enter the safe blockchain world.

- 15 -

Replay attack

detection

Pass After testing, there is no security issue.

Rearrangement

attack detection

Pass After testing, there is no security issue.

 Let humanity enter the safe blockchain world.

- 16 -

5. Business security detection

 Extract function【Pass】

Audit analysis: Perform a security audit on the extraction function (withdraw)

logic in the HotPotV3Fund.sol contract. The extraction purpose is (withdrawing a

specified share of the local currency), and the amountMin and deadline parameters, as

well as the price slippage and price impact limits, are added. The parameters are

checked for legitimacy, and whether there are design flaws in the logic design for the

withdrawal of the designated share of the local currency, and whether there is a reentry

attack, etc. The method use permission is: external, which is a normal business

requirement.

function withdraw(uint share, uint amountMin, uint deadline) external override

checkDeadline(deadline) nonReentrant returns(uint amount) {

 uint balance = balanceOf[msg.sender];

 require(share > 0 && share <= balance, "ISA");

 uint investment = FullMath.mulDiv(investmentOf[msg.sender], share, balance);

 address fToken = token;

 // Construct the amounts array

 uint value = IERC20(fToken).balanceOf(address(this));

 uint _totalAssets = value;

 uint[][] memory amounts = new uint[][](pools.length);

 for(uint i=0; i<pools.length; i++){

 uint _amount;

 (_amount, amounts[i]) = _assetsOfPool(i);

 _totalAssets = _totalAssets.add(_amount);

 }

 Let humanity enter the safe blockchain world.

- 17 -

 amount = FullMath.mulDiv(_totalAssets, share, totalSupply);

 // Withdraw funds from the position from large to small.

 if(amount > value) {

 uint remainingAmount = amount.sub(value);

 while(true) {

 // Take the largest position index number

 (uint poolIndex, uint positionIndex, uint desirableAmount) = amounts.max();

 if(desirableAmount == 0) break;

 if(remainingAmount <= desirableAmount){

 positions[poolIndex][positionIndex].subLiquidity(Position.SubParams({

 proportionX128: FullMath.mulDiv(remainingAmount, DIVISOR,

desirableAmount),

 pool: pools[poolIndex],

 token: fToken,

 uniV3Router: uniV3Router,

 uniV3Factory: uniV3Factory,

 maxSqrtSlippage: 10001,

 maxPriceImpact: 10001

 }), sellPath);

 break;

 }

 else {

 positions[poolIndex][positionIndex].subLiquidity(Position.SubParams({

 proportionX128: DIVISOR,

 pool: pools[poolIndex],

 token: fToken,

 uniV3Router: uniV3Router,

 uniV3Factory: uniV3Factory,

 maxSqrtSlippage: 10001,

 maxPriceImpact: 10001

 }), sellPath);

 remainingAmount = remainingAmount.sub(desirableAmount);

 Let humanity enter the safe blockchain world.

- 18 -

 amounts[poolIndex][positionIndex] = 0;

 }

 }

 /// When @dev withdraws funds from the liquidity pool, the liquidity is withdrawn

proportionally, and all tokensOwed have been withdrawn, so the fund's local currency balance at

this time will exceed the amount that users can withdraw.

 value = IERC20(fToken).balanceOf(address(this));

 // If the calculated value is greater than the actual fetched value

 if(amount > value)

 amount = value;

 // If it is the last person to withdraw

 else if(totalSupply == share)

 amount = value;

 }

Security advice: None.

 Harvest function【Pass】

Audit analysis: Perform a security audit on the Harvest function logic in the

HotPotV3FundController.sol contract. Its extraction purpose is (harvesting designated

tokens). Compared with the previous version, it is modified to verify the price slippage

through path calculation and check whether the parameters are legal Check whether the

relevant logic design is reasonable, etc. The method use permission is: external, which

is a normal business requirement.

function harvest(address token, uint amount) external override returns(uint burned) {

 bytes memory path = harvestPath[token]; //knownsec// Get token path

 PathPrice.verifySlippage(path, uniV3Factory, maxPIS & 0xffff); //knownsec// Verify

slippage

 Let humanity enter the safe blockchain world.

- 19 -

 uint value = amount <= IERC20(token).balanceOf(address(this)) ? amount :

IERC20(token).balanceOf(address(this));

 TransferHelper.safeApprove(token, uniV3Router, value);

 ISwapRouter.ExactInputParams memory args = ISwapRouter.ExactInputParams({

 path: path,

 recipient: address(this),

 deadline: block.timestamp,

 amountIn: value,

 amountOutMinimum: 0

 });

 burned = ISwapRouter(uniV3Router).exactInput(args);

 IHotPot(hotpot).burn(burned);

 emit Harvest(token, amount, burned);

 }

Security advice: None.

 Slippage check【Pass】

Audit analysis: The slippage verification function is implemented in the

verifySlippage function in the PathPrice.sol library contract file. It is used to calculate

whether the slippage difference between the exchange current price and the oracle price

does not exceed a given exchange path and maximum slippage. Maximum slippage.

library PathPrice {

 using Path for bytes;

 /// @notice Get the square root of the current price of the target token

 /// @param path conversion path

 /// @return sqrtPriceX96 The square root of the price (X 2^96), the price of tokenOut / tokenIn

for a given exchange path

 Let humanity enter the safe blockchain world.

- 20 -

 function getSqrtPriceX96(

 bytes memory path,

 address uniV3Factory

) internal view returns (uint sqrtPriceX96){

 require(path.length > 0, "IPL");

 sqrtPriceX96 = FixedPoint96.Q96;

 uint _nextSqrtPriceX96;

 uint32[] memory secondAges = new uint32[](2);

 secondAges[0] = 0;

 secondAges[1] = 1;

 while (true) {

 (address tokenIn, address tokenOut, uint24 fee) = path.decodeFirstPool();

 IUniswapV3Pool pool =

IUniswapV3Pool(PoolAddress.computeAddress(uniV3Factory, PoolAddress.getPoolKey(tokenIn,

tokenOut, fee)));

 (_nextSqrtPriceX96,,,,,,) = pool.slot0();

 sqrtPriceX96 = tokenIn > tokenOut

 ? FullMath.mulDiv(sqrtPriceX96, FixedPoint96.Q96, _nextSqrtPriceX96)

 : FullMath.mulDiv(sqrtPriceX96, _nextSqrtPriceX96, FixedPoint96.Q96);

 // decide whether to continue or terminate

 if (path.hasMultiplePools())

 path = path.skipToken();

 else

 break;

 }

 }

 /// @notice Get the square root of the price of the target token oracle

 /// @param path conversion path

 /// @return sqrtPriceX96Last The square root of the oracle price (X 2^96), the price of

 Let humanity enter the safe blockchain world.

- 21 -

tokenOut / tokenIn for a given exchange path

 function getSqrtPriceX96Last(

 bytes memory path,

 address uniV3Factory

) internal view returns (uint sqrtPriceX96Last){

 require(path.length > 0, "IPL");

 sqrtPriceX96Last = FixedPoint96.Q96;

 uint _nextSqrtPriceX96;

 uint32[] memory secondAges = new uint32[](2);

 secondAges[0] = 0;

 secondAges[1] = 1;

 while (true) {

 (address tokenIn, address tokenOut, uint24 fee) = path.decodeFirstPool();

 IUniswapV3Pool pool =

IUniswapV3Pool(PoolAddress.computeAddress(uniV3Factory, PoolAddress.getPoolKey(tokenIn,

tokenOut, fee)));

 // sqrtPriceX96Last

 (int56[] memory tickCumulatives,) = pool.observe(secondAges);

 _nextSqrtPriceX96 = TickMath.getSqrtRatioAtTick(int24(tickCumulatives[0] -

tickCumulatives[1]));

 sqrtPriceX96Last = tokenIn > tokenOut

 ? FullMath.mulDiv(sqrtPriceX96Last, FixedPoint96.Q96, _nextSqrtPriceX96)

 : FullMath.mulDiv(sqrtPriceX96Last, _nextSqrtPriceX96, FixedPoint96.Q96);

 // decide whether to continue or terminate

 if (path.hasMultiplePools())

 path = path.skipToken();

 else

 break;

 }

 }

 Let humanity enter the safe blockchain world.

- 22 -

 /// @notice verify whether the transaction slippage meets the conditions

 /// @param path conversion path

 /// @param uniV3Factory uniswap v3 factory

 /// @param maxSqrtSlippage maximum slippage, maximum value: 1e4

 /// @return current price

 function verifySlippage(

 bytes memory path,

 address uniV3Factory,

 uint32 maxSqrtSlippage

) internal view returns(uint) { //knownsec// Check slippage

 uint last = getSqrtPriceX96Last(path, uniV3Factory);

 uint current = getSqrtPriceX96(path, uniV3Factory);

 if(last > current) require(current > FullMath.mulDiv(maxSqrtSlippage, last, 1e4), "VS");

 return current;

 }

}

Security advice: None.

 Increase or decrease in liquidity【Pass】

Audit analysis: The liquidity increase and decrease function is implemented by

the addLiquidity function and subLiquidity function in the Position.sol library contract,

which is used to add liquidity for investment and reduce the position LP with divestment.

function addLiquidity(

 Info storage self,

 AddParams memory params,

 mapping(address => bytes) storage sellPath,

 mapping(address => bytes) storage buyPath

) public returns(uint128 liquidity) {

 (int24 tickLower, int24 tickUpper) = (self.tickLower, self.tickUpper);

 Let humanity enter the safe blockchain world.

- 23 -

 (uint160 sqrtPriceX96,,,,,,) = IUniswapV3Pool(params.pool).slot0();

 SwapParams memory swapParams = SwapParams({

 amount: params.amount,

 amount0: params.amount0Max,

 amount1: params.amount1Max,

 sqrtPriceX96: sqrtPriceX96,

 sqrtRatioAX96: TickMath.getSqrtRatioAtTick(tickLower),

 sqrtRatioBX96: TickMath.getSqrtRatioAtTick(tickUpper),

 token: params.token,

 token0: IUniswapV3Pool(params.pool).token0(),

 token1: IUniswapV3Pool(params.pool).token1(),

 fee: IUniswapV3Pool(params.pool).fee(),

 uniV3Router: params.uniV3Router,

 uniV3Factory: params.uniV3Factory,

 maxSqrtSlippage: params.maxSqrtSlippage,

 maxPriceImpact: params.maxPriceImpact

 });

 (params.amount0Max, params.amount1Max) = computeSwapAmounts(swapParams,

buyPath);

 //Because of slippage, reload sqrtPriceX96

 (sqrtPriceX96,,,,,,) = IUniswapV3Pool(params.pool).slot0();

 // Estimate the actual liquidity

 liquidity = LiquidityAmounts.getLiquidityForAmounts(sqrtPriceX96,

swapParams.sqrtRatioAX96, swapParams.sqrtRatioBX96, params.amount0Max,

params.amount1Max);

 require(liquidity > 0, "LIZ");

 (uint amount0, uint amount1) = IUniswapV3Pool(params.pool).mint(

 address(this),// LP recipient

 Let humanity enter the safe blockchain world.

- 24 -

 tickLower,

 tickUpper,

 liquidity,

 abi.encode(params.poolIndex)

);

 // Process the token balance not added to the LP and exchange it back to the fund's local

currency

 if(amount0 < params.amount0Max){

 if(swapParams.token0 != params.token){

 ISwapRouter(params.uniV3Router).exactInput(ISwapRouter.ExactInputParams({

 path: sellPath[swapParams.token0],

 recipient: address(this),

 deadline: block.timestamp,

 amountIn: params.amount0Max - amount0,

 amountOutMinimum: 0

 }));

 }

 }

 if(amount1 < params.amount1Max){

 if(swapParams.token1 != params.token){

 ISwapRouter(params.uniV3Router).exactInput(ISwapRouter.ExactInputParams({

 path: sellPath[swapParams.token1],

 recipient: address(this),

 deadline: block.timestamp,

 amountIn: params.amount1Max - amount1,

 amountOutMinimum: 0

 }));

 }

 }

 if(self.isEmpty) self.isEmpty = false;

}

 Let humanity enter the safe blockchain world.

- 25 -

......

function subLiquidity (

 Info storage self,

 SubParams memory params,

 mapping(address => bytes) storage sellPath

) public returns(uint amount) {

 address token0 = IUniswapV3Pool(params.pool).token0();

 address token1 = IUniswapV3Pool(params.pool).token1();

 uint sqrtPriceX96;

 uint sqrtPriceX96Last;

 uint amountOutMin;

 // Verify the slippage of the pool

 if(params.maxSqrtSlippage <= 1e4){

 // Slippage from t0 to t1

 (sqrtPriceX96,,,,,,) = IUniswapV3Pool(params.pool).slot0();

 uint32[] memory secondAges = new uint32[](2);

 secondAges[0] = 0;

 secondAges[1] = 1;

 (int56[] memory tickCumulatives,) =

IUniswapV3Pool(params.pool).observe(secondAges);

 sqrtPriceX96Last = TickMath.getSqrtRatioAtTick(int24(tickCumulatives[0] -

tickCumulatives[1]));

 if(sqrtPriceX96Last > sqrtPriceX96)

 require(sqrtPriceX96 > params.maxSqrtSlippage * sqrtPriceX96Last / 1e4, "VS");//

No overflow

 // Slippage from t1 to t0

 sqrtPriceX96 = FixedPoint96.Q96 * FixedPoint96.Q96 / sqrtPriceX96; // No overflow

 sqrtPriceX96Last = FixedPoint96.Q96 * FixedPoint96.Q96 / sqrtPriceX96Last;

 if(sqrtPriceX96Last > sqrtPriceX96)

 require(sqrtPriceX96 > params.maxSqrtSlippage * sqrtPriceX96Last / 1e4, "VS");

// No overflow

 Let humanity enter the safe blockchain world.

- 26 -

 }

 // burn & collect

 (uint amount0, uint amount1) = burnAndCollect(self, params.pool, params.proportionX128);

 // t0 is converted into fund local currency

 if(token0 != params.token){

 if(amount0 > 0){

 bytes memory path = sellPath[token0];

 if(params.maxSqrtSlippage <= 1e4) {

 sqrtPriceX96 = PathPrice.verifySlippage(path, params.uniV3Factory,

params.maxSqrtSlippage);

 amountOutMin = getAmountOutMin(sqrtPriceX96, params.maxPriceImpact,

amount0);

 }

 amount =

ISwapRouter(params.uniV3Router).exactInput(ISwapRouter.ExactInputParams({

 path: path,

 recipient: address(this),

 deadline: block.timestamp,

 amountIn: amount0,

 amountOutMinimum: amountOutMin

 }));

 }

 }

 // t1 is converted into the fund's local currency

 if(token1 != params.token){

 if(amount1 > 0){

 bytes memory path = sellPath[token1];

 if(params.maxSqrtSlippage <= 1e4) {

 sqrtPriceX96 = PathPrice.verifySlippage(path, params.uniV3Factory,

params.maxSqrtSlippage);

 Let humanity enter the safe blockchain world.

- 27 -

 amountOutMin = getAmountOutMin(sqrtPriceX96, params.maxPriceImpact,

amount1);

 }

 amount =

amount.add(ISwapRouter(params.uniV3Router).exactInput(ISwapRouter.ExactInputParams({

 path: path,

 recipient: address(this),

 deadline: block.timestamp,

 amountIn: amount1,

 amountOutMinimum: amountOutMin

 })));

 }

 }

}

Security advice: None.

 Fund inquiry【Pass】

Audit analysis: The fund query function is implemented by the assetsOfPool

function and the assets function in the Position.sol library contract, which is used to

query the assets of the liquidity pool and a certain position.

function assetsOfPool(

 Info[] storage self,

 address pool,

 address token,

 mapping(address => bytes) storage sellPath,

 address uniV3Factory

) public view returns (uint amount, uint[] memory) {

 uint[] memory amounts = new uint[](self.length);

 // Local variables are used to reduce ssload consumption.

 AssetsParams memory params;

 Let humanity enter the safe blockchain world.

- 28 -

 // Get the local currency prices of two tokens.

 params.token0 = IUniswapV3Pool(pool).token0();

 params.token1 = IUniswapV3Pool(pool).token1();

 if(params.token0 != token){

 bytes memory path = sellPath[params.token0];

 if(path.length == 0) return(amount, amounts);

 params.sqrt0 = PathPrice.getSqrtPriceX96Last(path, uniV3Factory);

 }

 if(params.token1 != token){

 bytes memory path = sellPath[params.token1];

 if(path.length == 0) return(amount, amounts);

 params.sqrt1 = PathPrice.getSqrtPriceX96Last(path, uniV3Factory);

 }

 (params.sqrtPriceX96, params.tick, , , , ,) = IUniswapV3Pool(pool).slot0();

 params.feeGrowthGlobal0X128 = IUniswapV3Pool(pool).feeGrowthGlobal0X128();

 params.feeGrowthGlobal1X128 = IUniswapV3Pool(pool).feeGrowthGlobal1X128();

 for(uint i=0; i < self.length; i++){

 Position.Info memory position = self[i];

 if(position.isEmpty) continue;

 bytes32 positionKey = keccak256(abi.encodePacked(address(this), position.tickLower,

position.tickUpper));

 // Get the number of assets of token0, token1

 (uint256 _amount0, uint256 _amount1) =

 getAssetsOfSinglePosition(

 AssetsOfSinglePosition({

 pool: pool,

 positionKey: positionKey,

 tickLower: position.tickLower,

 tickUpper: position.tickUpper,

 tickCurrent: params.tick,

 sqrtPriceX96: params.sqrtPriceX96,

 Let humanity enter the safe blockchain world.

- 29 -

 feeGrowthGlobal0X128: params.feeGrowthGlobal0X128,

 feeGrowthGlobal1X128: params.feeGrowthGlobal1X128

 })

);

 // Calculate cost currency assets.

 uint _amount;

 if(params.token0 != token){

 _amount = FullMath.mulDiv(

 _amount0,

 FullMath.mulDiv(params.sqrt0, params.sqrt0, FixedPoint64.Q64),

 FixedPoint128.Q128);

 }

 else

 _amount = _amount0;

 if(params.token1 != token){

 _amount = _amount.add(FullMath.mulDiv(

 _amount1,

 FullMath.mulDiv(params.sqrt1, params.sqrt1, FixedPoint64.Q64),

 FixedPoint128.Q128));

 }

 else

 _amount = _amount.add(_amount1);

 amounts[i] = _amount;

 amount = amount.add(_amount);

 }

 return(amount, amounts);

}

/// @notice Get a position, all assets measured in the fund's currency

/// @param pool transaction pool index number

 Let humanity enter the safe blockchain world.

- 30 -

/// @param token position index number

/// @return amount Asset quantity

function assets(

 Info storage self,

 address pool,

 address token,

 mapping(address => bytes) storage sellPath,

 address uniV3Factory

) public view returns (uint amount) {

 if(self.isEmpty) return 0;

 // No need to verify the existence of pool

 (uint160 sqrtPriceX96, int24 tick, , , , ,) = IUniswapV3Pool(pool).slot0();

 bytes32 positionKey = keccak256(abi.encodePacked(address(this), self.tickLower,

self.tickUpper));

 // Get the number of assets of token0, token1

 (uint256 amount0, uint256 amount1) =

 getAssetsOfSinglePosition(

 AssetsOfSinglePosition({

 pool: pool,

 positionKey: positionKey,

 tickLower: self.tickLower,

 tickUpper: self.tickUpper,

 tickCurrent: tick,

 sqrtPriceX96: sqrtPriceX96,

 feeGrowthGlobal0X128: IUniswapV3Pool(pool).feeGrowthGlobal0X128(),

 feeGrowthGlobal1X128: IUniswapV3Pool(pool).feeGrowthGlobal1X128()

 })

);

 // Calculate assets measured in local currency.

 Let humanity enter the safe blockchain world.

- 31 -

 if(amount0 > 0){

 address token0 = IUniswapV3Pool(pool).token0();

 if(token0 != token){

 uint sqrt0 = PathPrice.getSqrtPriceX96Last(sellPath[token0], uniV3Factory);

 amount = FullMath.mulDiv(

 amount0,

 FullMath.mulDiv(sqrt0, sqrt0, FixedPoint64.Q64),

 FixedPoint128.Q128);

 } else

 amount = amount0;

 }

 if(amount1 > 0){

 address token1 = IUniswapV3Pool(pool).token1();

 if(token1 != token){

 uint sqrt1 = PathPrice.getSqrtPriceX96Last(sellPath[token1], uniV3Factory);

 amount = amount.add(FullMath.mulDiv(

 amount1,

 FullMath.mulDiv(sqrt1, sqrt1, FixedPoint64.Q64),

 FixedPoint128.Q128));

 } else

 amount = amount.add(amount1);

 }

}

Security advice: None.

 Let humanity enter the safe blockchain world.

- 32 -

6. Code basic vulnerability detection

 Compiler version security【Pass】

Check to see if a secure compiler version is used in the contract code

implementation.

Detection results: After detection, the smart contract code has developed a

compiler version of 0.7.6, there is no security issue.

Security advice: None.

 Redundant code【Pass】

Check that the contract code implementation contains redundant code.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Use of safe arithmetic library【Pass】

Check to see if the SafeMath security abacus library is used in the contract code

implementation.

Detection results: The SafeMath security abacus library has been detected in the

smart contract code and there is no such security issue.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 33 -

 Not recommended encoding【Pass】

Check the contract code implementation for officially uns recommended or

deprecated coding methods.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Reasonable use of require/assert【Pass】

Check the reasonableness of the use of require and assert statements in contract

code implementations.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Fallback function safety【Pass】

Check that the fallback function is used correctly in the contract code

implementation.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 34 -

 tx.origin authentication【Pass】

tx.origin is a global variable of Solidity that traverses the entire call stack and

returns the address of the account that originally sent the call (or transaction). Using

this variable for authentication in smart contracts makes contracts vulnerable to

phishing-like attacks.z

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Owner permission control【Pass】

Check that theowner in the contract code implementation has excessive

permissions. For example, modify other account balances at will, and so on.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Gas consumption detection【Pass】

Check that the consumption of gas exceeds the maximum block limit.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 35 -

 call injection attack【Pass】

When a call function is called, strict permission control should be exercised, or the

function called by call calls should be written directly to call calls.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Low-level function safety【Pass】

Check the contract code implementation for security vulnerabilities in the use of

call/delegatecall

The execution context of the call function is in the contract being called, while the

execution context of the delegatecall function is in the contract in which the function is

currently called.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Vulnerability of additional token issuance【Pass】

Check to see if there are functions in the token contract that might increase the

total token volume after the token total is initialized.

Detection results: The security issue is not present in the smart contract code after

detection.

 Let humanity enter the safe blockchain world.

- 36 -

Security advice: None.

 Access control defect detection【Pass】

Different functions in the contract should set reasonable permissions, check

whether the functions in the contract correctly use pubic, private and other keywords

for visibility modification, check whether the contract is properly defined and use

modifier access restrictions on key functions, to avoid problems caused by overstepping

the authority.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Numerical overflow detection【Pass】

The arithmetic problem in smart contracts is the integer overflow and integer

overflow, with Solidity able to handle up to 256 digits (2^256-1), and a maximum

number increase of 1 will overflow to get 0. Similarly, when the number is an unsigned

type, 0 minus 1 overflows to get the maximum numeric value.

Integer overflows and underflows are not a new type of vulnerability, but they are

particularly dangerous in smart contracts. Overflow conditions can lead to incorrect

results, especially if the likelihood is not anticipated, which can affect the reliability

and safety of the program.

Detection results: The security issue is not present in the smart contract code after

 Let humanity enter the safe blockchain world.

- 37 -

detection.

Security advice: None.

 Arithmetic accuracy error【Pass】

Solidity has a data structure design similar to that of a normal programming

language, such as variables, constants, arrays, functions, structures, and so on, and there

is a big difference between Solidity and a normal programming language - Solidity does

not have floating-point patterns, and all of Solidity's numerical operations result in

integers, without the occurrence of decimals, and without allowing the definition of

decimal type data. Numerical operations in contracts are essential, and numerical

operations are designed to cause relative errors, such as sibling operations: 5/2 x 10 x

20, and 5 x 10/2 x 25, resulting in errors, which can be greater and more obvious when

the data is larger.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Incorrect use of random numbers【Pass】

Random numbers may be required in smart contracts, and while the functions and

variables provided by Solidity can access significantly unpredictable values, such as

block.number and block.timestamp, they are usually either more public than they seem,

or are influenced by miners, i.e. these random numbers are somewhat predictable, so

 Let humanity enter the safe blockchain world.

- 38 -

malicious users can often copy it and rely on its unpredictability to attack the feature.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Unsafe interface usage【Pass】

Check the contract code implementation for unsafe external interfaces, which can

be controlled, which can cause the execution environment to be switched and control

contract execution arbitrary code.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Variable coverage【Pass】

Check the contract code implementation for security issues caused by variable

overrides.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Uninitialized storage pointer【Pass】

A special data structure is allowed in solidity as a strut structure, while local

 Let humanity enter the safe blockchain world.

- 39 -

variables within the function are stored by default using stage or memory.

The existence of store (memory) and memory (memory) is two different concepts,

solidity allows pointers to point to an uninitialized reference, while uninitialized local

stage causes variables to point to other stored variables, resulting in variable overrides,

and even more serious consequences, and should avoid initializing the task variable in

the function during development.

Detection results: After detection, the smart contract code does not have the

problem.

Security advice: None.

 Return value call verification【Pass】

This issue occurs mostly in smart contracts related to currency transfers, so it is

also known as silent failed sending or unchecked sending.

In Solidity, there are transfer methods such as transfer(), send(), call.value(), which

can be used to send tokens to an address, the difference being: transfer send failure will

be throw, and state rollback; Call.value returns false when it fails to send, and passing

all available gas calls (which can be restricted by incoming gas_value parameters) does

not effectively prevent reentration attacks.

If the return values of the send and call.value transfer functions above are not

checked in the code, the contract continues to execute the subsequent code, possibly

with unexpected results due to token delivery failures.

Detection results: The security issue is not present in the smart contract code after

 Let humanity enter the safe blockchain world.

- 40 -

detection.

Security advice: None.

 Transaction order dependency【Pass】

Because miners always get gas fees through code that represents an externally

owned address (EOA), users can specify higher fees to trade faster. Since blockchain is

public, everyone can see the contents of other people's pending transactions. This means

that if a user submits a valuable solution, a malicious user can steal the solution and

copy its transactions at a higher cost to preempt the original solution.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Timestamp dependency attack【Pass】

Block timestamps typically use miners' local time, which can fluctuate over a

range of about 900 seconds, and when other nodes accept a new chunk, they only need

to verify that the timestamp is later than the previous chunk and has a local time error

of less than 900 seconds. A miner can profit from setting the timestamp of a block to

meet as much of his condition as possible.

Check the contract code implementation for key timestamp-dependent features.

Detection results: The security issue is not present in the smart contract code after

detection.

 Let humanity enter the safe blockchain world.

- 41 -

Security advice: None.

 Denial of service attack【Pass】

Smart contracts that are subject to this type of attack may never return to normal

operation. There can be many reasons for smart contract denial of service, including

malicious behavior as a transaction receiver, the exhaustion of gas caused by the

artificial addition of the gas required for computing functionality, the misuse of access

control to access the private component of smart contracts, the exploitation of confusion

and negligence, and so on.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Fake recharge vulnerability【Pass】

The transfer function of the token contract checks the balance of the transfer

initiator (msg.sender) in the if way, when the balances < value enters the else logic part

and return false, and ultimately does not throw an exception, we think that only if/else

is a gentle way of judging in a sensitive function scenario such as transfer is a less

rigorous way of coding.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 42 -

 Reentry attack detection【Pass】

The call.value() function in Solidity consumes all the gas it receives when it is

used to send tokens, and there is a risk of re-entry attacks when the call to the call tokens

occurs before the balance of the sender's account is actually reduced.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Replay attack detection【Pass】

If the requirements of delegate management are involved in the contract, attention

should be paid to the non-reusability of validation to avoid replay attacks

In the asset management system, there are often cases of entrustment management,

the principal will be the assets to the trustee management, the principal to pay a certain

fee to the trustee. This business scenario is also common in smart contracts.

Detection results: The security issue is not present in the smart contract code after

detection.

Security advice: None.

 Rearrangement attack detection【Pass】

A reflow attack is an attempt by a miner or other party to "compete" with a smart

contract participant by inserting their information into a list or mapping, giving an

attacker the opportunity to store their information in a contract.

 Let humanity enter the safe blockchain world.

- 43 -

Detection results: After detection, there are no related vulnerabilities in the smart

contract code.

Security advice: None.

 Let humanity enter the safe blockchain world.

- 44 -

7. Appendix A: Security Assessment of Contract Fund

Management

Contract fund management

The type of asset in

the contract
The function is involved Security risks

User token assets deposit、withdraw、add、sub、move SAFE

Check the security of the management of digital currency assets transferred by

users in the business logic of the contract. Observe whether there are security risks that

may cause the loss of customer funds, such as incorrect recording, incorrect transfer,

and backdoor withdrawal of the digital currency assets transferred into the contract.

 Let humanity enter the safe blockchain world.

- 45 -

